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Abstract. The set of possible Carnot cycles involving positive and/or negative Kelvin 
temperatures is analysed in terms of graphs and of transported entropy and entropy 
production. The formulations of the second law of thermodynamics, allowing for the 
existence of negative Kelvin temperatures, proposed by Ramsey and by Landsberg are 
shown to be logically equivalent. Some properties of the limiting temperatures T = +0, 
*CO, -0 are also investigated and a generalised third law is formulated. 

1. Introduction 

There have been many discussions about the thermodynamic behaviour of systems at 
negative Kelvin temperatures. One-heat-reservoir dissipative processes (entropy- 
producing processes) are permissible (Ramsey 1956, Schopf 1962, Powles 1963) in the 
domains of both positive and negative Kelvin temperatures: a one-reservoir direct 
work-to-heat conversion is permissible in the domain of positive Kelvin temperatures, 
whereas a one-reservoir direct heat-to-work conversion is permissible in the domain of 
negative Kelvin temperatures. We consider here particularly two-reservoir processes 
(Carnot cycles) for all possible combinations of positive or negative temperatures. 

In a previous paper by one of us (Landsberg 1977), a similar study of heat engines 
and heat pumps at negative and positive Kelvin temperatures was presented. An 
analogy between heat pumps at positive (negative) temperatures and heat engines at 
negative (positive) temperatures emerged. In the present paper, we re-examine these 
cycles from the point of view of transported entropy and entropy production. 

We first introduce diagrams that summarise the results of Landsberg (1977) and of 
the present work in a qualitative and convenient manner. We then comment on the 
relation between Ramsey’s and Landsberg’s formulations of the second law and 
conclude with a discussion of the special properties of the. temperatures T = 
+o, fcO,  -0. 

/I Present address: DCpartement de Physique, UniversitC de Sherbrooke, Sherbrooke, QuCbec, J1K 2R1, 
Canada. 
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i.1. Carnot cycles 

In a Carnot cycle, an engine undergoes two isothermal changes and two adiabatic 
changes. During each isothermal change the engine exchanges heat with a heat 
reservoir of fixed temperature. Let the two heat reservoirs have Kelvin temperatures 
Th, Tc (positive or negative), with Th being the temperature of the hotter reservoir, i.e. 
l / T h <  l /Tc .  Let the quantities of heat supplied to the engine per cycle be Qh, Q,, so 
that a negative value of Q means the engine rejects heat into the reservoir. Let W be 
the net work supplied to the engine per cycle, so that a negative value for W indicates a 
net gain of work potential in the surroundings, for example the raising of a weight in a 
gravitational field. 

The first law of thermodynamics applied to one cycle of the engine gives, (note that 
our sign convention for W differs from that of Landsberg (1977))  

o = Q h + Q c +  w. (1.1) 
Let the heat reservoirs at temperatures Th, Tc function in such a way that the entropy 
change AS of each reservoir in one cycle is correctly given by the relations 

A s h  = -ah/ Tt, ASc = -Qc/ T,. (1.2) 
The entropy change of the working substance itself is zero in one cycle and thus will not 
be discussed any further. The second law of thermodynamics implies that 

( + = A s h  + AS, 3 0, (1.3) 
where (+ is the entropy produced (or generated) in the course of the cycle. Equation 
(1.3) is equivalent to the Clausius inequality 

(Oh/ Th) f (QJ Tc) 0. (1.4) 
All results of this paper are derived from this theory. Our remarks for negative 
temperatures apply only to systems capable of achieving such temperatures, i.e. in 
general to systems which have an upper limit to the possible energy of their allowed 
states (Ramsey 1956). 

We now proceed to investigate the various possible types of Carnot cycles. 

2. Graphical catalogue of possible Carnot cycles 

In a previous paper (Landsberg 1977) an analogy between heat pumps at positive 
(negative) Kelvin temperatures and heat engines at negative (positive) Kelvin 
temperatures was given. We present in figure 1 diagrams summarising these results. 
They enable us to see at a glance whether a proposed cycle violates the first or the 
second law of thermodynamics. 

2.1. The graphs 

(i) Two horizontal temperature axes and a vertical entropy axis are shown in each 
case. A reservoir is represented by a dark square along the temperature axis. Positive 
Kelvin temperature reservoirs are on the top temperature axis, negative Kelvin 
temperature reservoirs on the bottom axis. The dotted line can be thought of as the 
engine or working substance. 
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(ii) Heat is represented by a solid arrow originating or ending at a reservoir. The 
heat quantity is positive if the arrow points toward the engine, negative in the other 
case, The magnitude of the heat Qh or Q, is proportional to the length of the arrow. 

(iii) Entropy. The sign of the entropy change of a reservoir is positive if the arrow 
points upward, negative if it points downward. The magnitude of the entropy change is 
proportional to the product of length and thickness of the arrow. Whether it is at 
positive or negative T, the thickness of an arrow is simply increased as one moves to the 
right of the diagram. 

By use of these rules, the total entropy change in a given process can be calculated as 
the sum of the contributions of each reservoir and, to satisfy the second law, must be 
larger than or equal to zero. (The engine does not enter the calculation.) 

(iv) Work is represented by a double arrow. The work quantity is positive if the 
double arrow points toward the engine, negative in the other case. 

A S , < O  I8 ! l l ,gure21i  216 I O W  15' 1hW 2nd IOW. 151 I O W  

io1 lbi ;ci id! 

Figure 1.1. 
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Figure 1.3. 

Figure 1. Graphical catalogue of Carnot cycles. Forbidden cycles are crossed out and a 
caption indicates which law of thermodynamics they violate. When two laws of ther- 
modynamics appear, it is meant that the cycle violates the second law if the first law is 
satisfied or vice versa. Below each of the twelve allowed cycles, we show, from left to right, 
some entropy changes of the reservoirs, the numbers corresponding to table 1 of Landsberg 
(1977) and the figure number for the T-S plane diagrams appearing in this paper. Other 
symbols are explained in 5 2.  

By the first law, the net amount of heat that goes into the engine must equal the net 
amount of work that comes out of it. Thus, for example, when the resultant of the 
vectorial sum of the lines representing heat points toward the engine, the double arrow 
comes out of the engine. 

(v) General. Even though the diagrams are only qualitative, it is easy to eliminate 
cycles that are not thermodynamically allowed. They are represented by crossed out 
diagrams, and a subtitle indicates which law they violate. Sometimes these forbidden 
cycles can be drawn in various ways, some of which violate the first law but not the 
second and others which violate the second law but not the first. 

When arrows go all the way between the reservoir and the dotted line, we mean that 
any one line can be longer than the other-the relative length is not fixed by any law of 
thermodynamics. 

2.2. Comments 

The pump-engine isomorphism of Landsberg (1977) can be easily seen from the 
diagrams. All pumps and engines can be put into one-to-one correspondence by 
transporting the heat arrows from the positive to the negative temperature axis, or vice 
versa, without changing their direction or magnitude. For example, if the arrows in 
figure l . l (a )  are transported from the positive to the negative temperature region 
without changing their direction or magnitude, we obtain figure 1.2(e). 

For cycles linking reservoirs with Kelvin temperatures of opposite sign, the follow- 
ing points should be noted. 

(i) The cycles in figures 1.3(a) and ( e )  can be realised in principle for a nuclear spin 
system by using adiabatic, non-quasistatic processes linking states of equal entropy but 
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with Kelvin temperatures of opposite sign (Ramsey 1956, Schopf 1962, Powles 1963, 
Purcell and Pound 1951, Abragam 1958, Bloembergen 1973) (and with lTcl = ITh/). 

(ii) We could generalise diagrams ( a )  and (e) of figure 1.3 to reservoirs that do not 
necessarily have temperatures of equal magnitude even if of opposite sign. Such cycles 
could be realised by coupling the cycles of figures 1.3(a) and ( e )  to quasistatic Carnot 
cycles at positive or negative Kelvin temperatures. 

(iii) The cycles of diagrams ( b )  and (f)  of figure 1.3 are described by Dunning- 
Davies (1976). These cannot use the field-reversal trick (Ramsey 1956, Purcell and 
Pound 1951, Abragam 1958) of adiabatically linking states of equal entropy and 
oppositely signed Kelvin temperatures since the entropy of the working substance 
decreases during both isothermal parts of the cycle while it must add up to zero (as far as 
the working substance is concerned) over the whole cycle. Such cycles are ther- 
modynamically allowed (they satisfy by construction the first and second laws of 
thermodynamics), but it is not known if they can be realised physically. 

For each of the allowed cycles of figure 1, more conventional T-S plane diagrams 
are drawn in figures 2.1-2.9. (Note the 1 /T  temperature axis in these figures.) 

We have not given special attention to trivial limiting cases such as, for example, 
W = 0. Such a cycle can be classified as a pump, an engine, or both. Limiting cases that 
overlap two categories can usually be found in either. This holds true for the rest of this 
paper. 

L S W  

C A  0 D  

sW t 

2 5  
110),1161 

T-' i  1 

2.3 
115) 

I 5, I 

Figure 2. Carnot cycles in the (T-'-S) plane of the working substance (note subscript on S). 
Broken lines stand for parts of the cycle that are not necessarily quasistatic and thus may not 
be representable on a (T-'-S) diagram. The numbers in parenthesis refer to table 1 of 
Landsberg (1977). When two numbers appear in parenthesis for the same figure, the 
number to the left refers to the case where IQ,I < I Q h /  and the one to the right to the case 
/ Q , / > \ Q h l  corresponding to an increase of the segment AB relative to the segment CD. 
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3. Transported entropy, entropy production, and Carnot cycles 

In eight of the twelve permitted cycles of figure 1, ASh and AS, are of opposite sign and 
we can regard them as implying an entropy transport between the reservoirs. The 
magnitude of the entropy actually transported from one reservoir to the other-when 
ASh and ASc are of opposite sign-is the lesser of IAS,l, /ASh/. In a quasistatic Carnot 
cycle between reservoirs with Kelvin temperatures of like sign-both positive or both 
negative-the entropy changes in the reservoirs are equal and opposite (AS,+ ASh = 0, 
IAS (transported)l = IAShl = /ASCI), and the work per cycle is directly related to the 
amount of entropy transported: 1 Wi = IAS (transported)/(?b- Tc). We shall use the 
name drop cycle if ASh < 0 (figure l . l (a )  and (f), 1.2(a), 1.3(e)) and lift cycle if AS,< 0 
(figures l . l ( e ) ,  1.2(b) and ( e ) ,  1.3(a)). To the pump-engine analogy noted already 
(Landsberg 1977), one can therefore add a drop-lift analogy as shown in table 1. In the 
remaining four cycles of figure 1, the entropy of both reservoirs is increased and we may 
call them roll cycles (figures l . l (g) ,  1.2(c) and 1.3(b) and (f)). In these cycles, entropy is 
‘rolled out’ but not transported. 

Table 1. Analogous pairs of cycles are placed in the same column. P stands for pump 
(W>O), E for engine (W<O). When no temperature inequality appears, the case 
Tb<O< T, is involved. For each cycle, both the figure number and the number cor- 
responding to table 1 of Landsberg (1977) are indicated. Note that cycles appearing in the 
same column can be obtained from one another by transporting the heat arrows in figure 1 
from the positive to the negative temperature axis, or vice versa, without changing their 
direction or magnitude. 

Drop Figure l . l ( a )  Figure 1.2(a)  Figure l . l ( f )  Figure 1.3(a) 
A s h  < 0 (8) (9) (14) ( 1 5 4  

E; T>O E; T<O P; T>O P 

Lift Figure 1.2(e) Figure l . l ( e )  Figure 1.2(b) Figure 1.3(c) 
ASc < 0 (16) (13) (10) ills) 

P; T<O P; T>O E; T < 0  E 

Roll Figure 1.2(c) Figure 1.3(b) 
(11) (12) 
E; T<O E 

Roll Figure l . l ( g )  Figure 1.3(f) 
(15) (17) 
P; T>O P 

Another pairing of cycles is possible. Given the signs of the Q’s and the T’s, it can 
be, in certain cases, just a question of the magnitudes of the heat exchanged with the 
reservoirs as to whether we have an engine or a pump. To discuss this, note that 
equations (1.1)-( 1.3) imply 

(3.1) w = Wd + TcCr = W, + ThU 

(3.2) 
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The following definitions are also useful: 

Now, consider the pair of drop cycles (ASh<  0), (figures l . l ( a )  and ( f ) ) .  The former is 
an engine and thus, as we can see from equations (3.1)-(3.3), satisfies u S s i  or, 
equivalent!y, U s sd. When CT 3 s1 or, equivalently, U 3 sd, we obtain a pump as in figure 
1.1 ( f ) .  

Consider now the pair of lift cycles (AS,< 0) (figures 1.2(6) and ( e ) )  in a similar way. 
The former is a pump and thus equations (3.1)-(3.3) reveal that U S  sl  or U S  sd .  When 
U 3 s1 or U 3 sd ,  we obtain an engine as in figure 1.2(e). 

Finally, the roll cycle figure 1.3(6) is an engine and thus satisfies u 2 s l  or u S s d  

while the cycle figure 1.3( f )  is a pump and thus satisfies U S s1 or U 3 sd.  

Lastly, note that for cycles with U > 0 the net effect of the cycle can be matched by 
other, suggestive processes. For example, the cycle of figure l . l (a )  with u>O is 
equivalent to an entropy-conserving cycle of this type followed by a direct work-to-heat 
transformation into reservoir c. Similarly, the cycle of figure 1.2(6) is equivalent to heat 
conduction from h to c followed by direct heat-to-work transformation from h. Again, 
the cycle of figure 1.3(e) with C T > O  is equivalent to an entropy-conserving cycle 
followed by a heat-to-work transformation from h, etc. 

A number of studies have shown (Landsberg 1959, 1961, Tremblay 1976, Tykodi 
1976) that the quasistatic versions of figures 1.3(a) and (e) are forbidden, but their 
non-quasistatic execution has not been disproved. 

Table 2 summarises the properties of allowed cycles. Instead of the usual efficiency 
and coefficient of performance which can be found in Landsberg (1977), we define for 
drop cycles the drop ratio 

(3.4) R d = - w/ I Qh 1 

Ri = w/IQCI. (3.5) 

and for lift cycles the lift ratio 

Note that for figure l . l ( a ) ,  Rd reduces to the usual efficiency while for figure 1.2(6) RI 
reduces to the inverse of the coefficient of performance. We note the identities which 
have been used to simplify the calculations for table 2: 

(3.6) 

(3.7) 

4. Second-law statements 

The work of Ramsey (1956) showed that the usual Kelvin-Planck statement of the 
second law of thermodynamics had to be modified to allow for the existence of negative 
Kelvin temperatures. Ramsey’s formulation of the second law is: ‘It is impossible to 
construct an engine that will operate in a closed cycle and produce no effect other than 
(i) the extraction of heat from a positive-tempersture reservoir with the performance of 
an equivalent amount of work, or (ii) the rejection of heat into a negative-temperature 
reservoir with the corresponding work being done on the engine.’ 
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Landsberg (1977) has suggested another formulation of the second law: 
(i) Heat can be completely converted into work by a heat engine which takes a 

medium through a cyclic process if, and only if, the heat is withdrawn from a 
negative-temperature reservoir. 

(ii) Work can be completely converted into heat by a heat pump which takes a 
medium through a cyclic process if, and only if, the rejection of heat takes place into a 
positive-temperature reservoir. 

We can prove that these two formulations are logically equivalent. 
If part ( i )  of Ramsey’s formulation is wrong, then it is possible to construct an engine 

working in a closed cycle producing no effect other than the extraction of heat from a 
positive-temperature reservoir with the performance of an equivalent amount of work. 
This in turn implies that part ( i )  of Landsberg’s formulation is wrong. 

If part ( i )  of Landsberg’s formulation is wrong, then there are two possibilities, ( a )  or 
( 6 ) :  

( a )  Heat can be converted into work by a heat engine taking a medium through a 
cyclic process if, and only if, the heat is withdrawn from a positive-temperature 
reservoir. This in turn implies that part ( i )  of Ramsey’s formulation is wrong. 

( b )  Heat cannot be completely converted into work by a heat engine which takes a 
medium through a cyclic process if, and only if, the heat is withdrawn from a 
negative-temperature reservoir. This in turn implies that part ( i )  of Ramsey ’s statement 
is wrong. 

The same procedure could be used for part (ii) of both statements. These results 
prove that the formulations of the second law by Ramsey (1956) and Landsberg (1977) 
are logically equivalent. 

5. Properties of temperatures T = fO, fa 

We now justify the exclusion from the preceding considerations of reservoirs at any 
one of the temperatures To = +0, +CO, -CO, -0. Recall that a thermodynamic phase of a 
system consists of a set of points p (representing equilibrium states) which are 
adiabatically linked with each other. The frontier of a set p may contain sets of points 
[(+O), ((+CO), [(-CO), [(-0) corresponding respectively to the temperatures To = +0, 
+CO, -CO, -0. We ask which of a set of points (TO) may be considered as belonging to p, 
and show that in each of the four cases the set p fl [(To)  is so poorly populated that no 
continuous curve can be drawn in it. 

Proof. If such a curve could be drawn, a heat reservoir at a temperature T2 = TO 
could be made into one of the reservoirs in an entropy-conserving Carnot cycle, where it 
would provide an isothermal process at To. This leads to the difficulty that the entropy 
conservation condition Q1/T1 + Q2/T2 = 0 cannot then be satisfied for 0 < IQ1l, lQ21; 
/Til < CO. This can be seen by choosing the ‘singular’ reservoirs as follows: 

Thus, if any equilibrium states at the singular temperatures To belong to a set p at all, 
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they can be only isolated states, lying on the boundary of p. The set y consists of the 
internal points of a set p and our conclusion is in common with that of Landsberg 
(1959), Tremblay (1976) and Dunning-Davis (1976), i.e. 

Y n C(To) = 0 (To = *O, +a). (5.1) 

We have used only the second law in this argument (extending the reasoning of 
Landsberg (1961, p 98)). The singular nature of the four temperatures To has, of 
course, been noted before (see e.g. the references cited including Tykodi 1975, 1978). 

A more clear-cut sweep of this matter is required, and this shows the need for a third 
law of thermodynamics as regulating the status of boundary points in a thermodynamic 
phase space (Landsberg 1959). The unattainability of the temperatures To = * O  
implies 

p n i ( + o )  = p n i ( - o )  = 0,  (5.2) 

which is stronger than (5.1) for TO = *O. The adiabatic fast passage through To = fa 
shows that points representing states at these temperatures must be considered as part 
of the set p, though, as boundary points, they are not in y. Thermal mixing experiments 
involving these temperatures have been performed by destroying the magnetisation of 
one of the spin systems by saturation (Purcell and Pound 1951, Abragam 1958, 
Bloembergen 1973). Hence systems exist such that 

p n i(-) > 0, (5.3) 

i.e. irreversible processes exist that can reach T = *a (Schopf 1962, Powles 1963, 
Dunning-Davis 1976, Purcell and Pound 1951, Abragam 1958, Bloembergen 1973). 
This part of the third law is summarised as ( a ) ,  below. 

In an extension of Landsberg (1961, p 112), we now propose our form for the 
remaining part of the third law with a view to deducing results from it below: Given a 
system A and a singular temperature TO, the entropy is finite and differentiable near To 
and converges to a unique value at TO. 

Utilise first the finiteness and differentiabilityt part of this part of the third law. It 
implies with p = l / k T  that T ( d S / d T ) V  + 0 near T = + O  and -p(dS/ap)v + 0 near 
p = *O. Thus at all four points 

Cv = T(aS /aT)V  = -P(dS /ap)v  + 0 as T + (io, fm). (5.4) 

This makes plausible, as we have already shown from the second law, that reservoirs at 
the temperatures To cannot be expected: the smallest exchange of heat with such a 
reservoir must have a large effect on its temperature. If one also invokes statistical 
mechanics, following Tremblay (1976), one can go one step further. Since T = fa 
implies equiprobability of all accessible states the entropy at these states must be 
maximal. Hence not only does (5.4) hold at these temperatures, but 

the ( S ,  p )  curve has a maximum at T = fa. ( 5 . 5 )  

Next use the uniqueness of our third-law statement. This states that, given the 
system A and one of the singular temperatures To, the entropy S(A, To) is unique, i.e. it 
cannot depend on other parameters x such as magnetic field, volume, etc. Thus all the 

t Differentiability implies continuity, and not conversely (see, for example, Rudin 1964). Finiteness has to be 
stipulated separately since, for example, S - is allowed while S - T-”’ is forbidden near T = 0. 
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curves S(A, x ,  T )  converge to a single point S(A, To). The conventional Nernst heat 
theorem deals with this convergence only at T = +O. 

In summary, the two groups of singular temperatures T = f 0  and T = fa differ in 
the following ways. 

( a )  States represented by points l (k0)  are not part of the appropriate set p, whereas 
states represented by points ~(* :co)  are part of such sets (cf relations (5.2) and (5.3)). 
This remark should be regarded as the first part of the third law. 

( b )  States l ( i 0 )  represent strictly least values, states l ( k a )  represent strictly 
maximal values of the entropy. 

On the other hand they have the common third-law features. 
( c )  States represented by points l ( T o )  are not in a set y (cf relation (5.1)). 
( d )  Cv+O as T+To.  

6. Summary 

We produced a graphical catalogue (figure 1) of possible Carnot cycles involving both 
positive and negative Kelvin temperatures that matched the cases listed in Landsberg 
(1977). We then analysed each of the possible Carnot cycles in terms of transported 
entropy and entropy production, pointing out the analogies between lift cycles in one 
temperature domain and drop cycles in the other domain. We proved that two 
diff erent-sounding generalisations of the Kelvin-Planck statement of the second law of 
thermodynamics are logically equivalent. Using a generalised third law, we also 
exhibited similarities and differences between the singular temperatures T = +0, 
fa, -0. 
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